
ICASE Report #94-44 NASA Contractor Report #194929

On the Utility of the Multi-Level Algorithm for the Solution of Nearly

Completely Decomposable Markov Chains

Scott T. Leutenegger �

Institute for Computer Applications in Science and Engineering

Mail Stop 132c, NASA Langley Research Center, Hampton, VA 23681-0001

leut@icase.edu

Graham Horton y

Lehrstuhl f�ur Rechnerstrukturen, Universit�at Erlangen-N�urnberg

Martensstr. 3, 91058 Erlangen, Federal Republic of Germany

graham@immd3.informatik.uni-erlangen.de

Abstract

Recently the Multi-Level algorithm was introduced as a general purpose

solver for the solution of steady state Markov chains. In this paper we con-

sider the performance of the Multi-Level algorithm for solving Nearly Com-

pletely Decomposable (NCD) Markov chains, for which special-purpose iter-

ative aggregation/disaggregation algorithms such as the Koury-McAllister-

Stewart (KMS) method have been developed that can exploit the decompos-

ability of the the Markov chain. We present experimental results indicating

that the general-purpose Multi-Level algorithm is competitive, and can be

signi�cantly faster than the special-purpose KMS algorithm when Gauss-

Seidel and Gaussian Elimination are used for solving the individual blocks.

�This research was supported by the National Aeronautics and Space Administration under NASA contract NAS1-

19480 while the second author was in residence at the Institute for Computer Applications in Science and Engineering,

NASA Langley Research Center.
yThis work was carried out in part while the second author was a guest at ICASE, NASA Langley Research Center.

i

1 Introduction

Recently the Multi-Level (ML) algorithm was introduced as a fast solver for general steady-state Markov

chains [2]. The algorithm has been shown to be faster, often one or two orders of magnitude faster

relative to the Gauss-Seidel and optimized SOR algorithms for a number of di�erent Markov chains.

The study showed the potential of the algorithm, but in the light of the small number of test problems

represented only a �rst step in determining whether the excellent performance can be realized for

all Markov chains. In this work we investigate the utility of the ML algorithm for solving Nearly

Completely Decomposable (NCD) Markov chains. For this class of Markov chains special-purpose

iterative aggregation/disaggregation (IAD) algorithms [3, 11] have been shown to perform well. Thus,

demonstration of the utility of an algorithm for solving NCD chains necessitates comparison with one of

these IAD schemes. We include the Koury-McAllister-Stewart (KMS) [3] algorithm as a representative

example. We also include the Gauss-Seidel (GS) method for purposes of comparison.

In our experiments we structure the Markov chains in NCD \normal", i.e. almost block-diagonal

form. Hence we give an advantage to KMS, since in practice the algorithm would require computation

time for the restructuring of the Markov chain. However, Stewart and Wu have shown that this re-

structuring time often is not signi�cant [9]. Like Stewart and Wu, we use Gaussian elimination to solve

blocks of size less than 100 states.

One di�erence between our experiments and those of Stewart and Wu is that they use SOR as well

as GS to solve blocks. Note that we have found using SOR with a well chosen relaxation parameter for

solving the blocks can decrease the computation time of the KMS algorithm by a factor of 3 or more for

many of the chains we consider, but determining the correct parameter is not a trivial task. Another

di�erence is that when Stewart and Wu use SOR or GS to solve a block, they perform a �xed number

of iterations on the block whereas we perform iterations until the solution does not improve by more

than � in any state, for some �.

The rest of the paper is organized as follows. In section 2 we provide some background material on

NCD chains. In sections 3 and 4 we brie
y describe the ML and KMS algorithms. Section 5 contains

our experimental results. The �nal section contains our conclusions.

2 Nearly Completely Decomposable Markov Chains

In this section we give a brief informal description of NCD chains and give two examples that we use

in our experimental studies. The seminal work on NCD systems was conducted by Simon and Ando

[6], and applied to Markov chains by Courtois [1]. For a more detailed treatment we refer the reader to

Stewart [9, 10]. An NCD Markov chain with B blocks can be ordered so that the generator matrix can

be written in block form as:

Q =

0
BBBBB@

Q11 Q12 . . . Q1B

Q21 Q22 . . . Q2B

: : : :

: : : :

QB1 QB2 . . . QBB

1
CCCCCA

; (1)

1

0 1 2 3 4 5

1 1

22

1 1

22

0.001

0.002

Figure 1: Sample Nearly Completely Decomposable Birth-Death Markov Chain

where the elements of the o�-diagonal blocks Qij ; i 6= j are small compared to the elements of the

diagonal blocks Qii. The larger the elements of the o�-diagonal blocks, the less NCD the chain becomes.

Note that for a completely decomposable chain the o�-diagonal blocks would contain only zeros and

the Markov chain degenerates into a set of independent problems. Any solution algorithm that makes

use of the block structure will have to invest some pre-processing e�ort into permuting the matrix into

the above almost block-diagonal form.

In this paper we consider two di�erent example NCD Markov chain structures.

2.1 Example 1

The �rst example is a modi�ed birth-death chain that is subdivided into B blocks of size N. The birth

rate between blocks is �� the birth rate within each block, and the death rate between blocks is ��

the internal death rate. The parameter � thus controls the degree of decomposability of the chain. In

�gure 1 we provide an example with 2 blocks, three states per block, a birth (death) rate of 1 (2), and

� = 0:001. In our experiments we will vary both the number of blocks for a given chain size and the

inter-block coupling strength �.

2.2 Example 2

The second example NCD Markov chain structure, shown in �gure 2, is the interactive computer

system model used by Stewart [4, 8, 9]. In this model a CPU processes jobs arriving from a set of

terminals, which may subsequently require service from a �ling device (FD) or secondary memory

(SM). Let Lx equal the length at queue \x". Let � equal the number of jobs in the system, giving

� = LCPU +LFD+LSM . We assume there is one job per terminal, and that the terminals are modeled

as an in�nite server. The Markov chain is decomposed into B + 1 blocks, where B is the number of

terminals and block i is the set of all states which have i jobs in the system. These blocks form an NCD

chain when the terminal service rate and the probability of returning to the terminals after visiting the

CPU are small.

We assume the same parameter values as are used in [9]: the rate leaving the terminals is m
10;000

,

the rate leaving the SM device is 0.2, the rate leaving the FD is 1
30
, the rate from the CPU to the FD is

0.05, the rate from the CPU to the terminals is 0.002, and the rate from the CPU to the SM device is

100(�
128

)1:5. This last rate is meant to model the rate at which page faults occurs and increases with the

number of currently executing jobs. For a more detailed description of the model we refer the reader to

2

TERMINALS

SM

FD

CPU

Figure 2: Multiprogrammed Queueing Network Model

[9, 4].

3 Multi-Level Algorithm

In this section we brie
y review the recently introduced multi-level algorithm, details of which can be

found in [2]. Consider a Markov chain consisting of n states s0 . . .sn�1. Denote the unknown vector by

p, where pi is the probability of �nding the Markov chain in state si.

We then have to solve the system of equations

Pp = 0 (2)

with the additional condition
i=n�1X
i=0

pi = 1 (3)

This equation is usually written as �Q = 0 for � = pT and Q = PT , the in�nitesimal generator matrix.

A coarser representation of the Markov chain described by matrix P may be obtained by aggre-

gation. This means creating a new Markov chain described by a matrix Q with the vector of state

probabilities q, each of whose N states S0 . . .SN�1 is derived from a number of states of the original

system.

In the following we will use the terms �ne level and coarse level to refer to Markov chains where

the latter is obtained by aggregation from the former. The relation sk 2 Si signi�es that the �ne level

state sk is mapped by the aggregation operation to the coarse level state Si.

The matrix Q of the aggregated system is chosen as follows :

Qji =

P
sk2Si

pk
P

sl2Sj

Plk

P
sk2Si

pk
(4)

3

procedure ml(l)

if (l = 0)

solve Pl�pl = 0

else

~pl = GS�(�pl)

~pl�1 = Rl�1;l(~pl)

ml(l� 1)

p�l�1 = �pl�1=~pl�1
p�l = Il�1;l(p

�
l�1)

�pl = C(~pl; p
�
l)

return

Figure 3: Multi-Level Algorithm

This is the well-known aggregation matrix. Note that the matrix Q is a function not only of the �ne

level matrix P , but also of the �ne level solution vector p.

This yields the aggregated equations in the unknown q:

Qq = 0
N�1X
i=0

qi = 1 :

It can then be shown that

qi =
X
sk2Si

pk ; (5)

i.e. the solution q of the aggregated system truly represents a coarser version of the solution p of the

original problem. The probability of being in state qi is the sum of the probabilities of being in any of

its constituent �ne-level states. We use the aggregation equation as a basis for the multi-level method,

whereby we approximate the exact solution values pk in (4) above by values from the current iterate.

The ML algorithm can be viewed as a recursive aggregation/disaggregation algorithm. We adopt

the following abbreviations for vectors a; b; c 2 IRm:

a = b � c � ai = bi � ci; 1 � i � m

a = b=c � ai = bi=ci; 1 � i � m

The two-level version of the ML iteration is given by the following sequence of steps.

� Perform Gauss-Seidel relaxation on current iterate p(i), yielding ~p

~p = GS(p(i)) (6)

� Restrict current solution ~p to coarse-level vector ~q

~q = R(~p) � ~qi =
X
sk2Si

~pk (7)

4

� Compute coarse matrix ~Q

~Qji =

P
sk2Si

~pk
P

sl2Sj

Plk

~qi
(8)

� Solve coarse equation for �q

~Q�q = 0 ;
N�1X
i=0

�qi = 1 (9)

� Compute coarse level correction q�

q� = �q=~q (10)

� Compute �ne level correction p�

p� = I(q�) � p�k = q�i (11)

� Apply �ne level correction to obtain new iterate p(i+1)

p(i+1) = �p = C(~p; p�) � ~p � p� (12)

In this two-level form the method is similar to well-known iterative aggregation/disaggregation

(IAD) methods such as those of Koury, McAllister and Stewart [3] and of Takahashi [11]. The multi-

level algorithm is obtained by recursive application of the two-level algorithm to obtain a solution to

the aggregated equation (9) and is described in algorithmic form in �gure 3. We use the subscript l

to denote level of representation (l = lmax �nest level, i.e. the original Markov chain, l = 0 coarsest

level). The coarse level l� 1 and �ne level l between which the operators I and R map are identi�ed by

appropriate indices. Note that, because of the recursive nature of the algorithm, the unknowns q�, �q and

~q are represented by the variables p�l�1, �pl�1 and ~pl�1, respectively. We allow in general the possibility

of applying GS � times at each level with � � 1, denoted by GS� .

The performance of the policy can be greatly in
uenced by the aggregation strategy used. The

aggregation strategy used for all experiments in this paper attempts to aggregate pairs (or triples) of

�ne level states that are strongly coupled. Let 	 be the maximum number of �ne level states allowed

to be aggregated into a single coarse level state. For all experiments in this paper 	 is set to three.

Let � be the aggregation rate di�erential, used for determining whether two states are coupled strongly

enough to aggregate them together. For all experiments in this paper we set � = 0:5. We loop though

all states of a given level and for each state si that has not yet been assigned to an aggregated state:

1. Let absolutemax = the maximum of fPij ; Pjig 8j.

2. Let availablemax = the maximum of fPij ; Pjig 8j such that sj has not yet been assigned to an

aggregated state whose number of constituent �ne level states is equal to 	.

3. If availablemax � (� � absolutemax), then aggregate si with sj . Note, it is possible that sj is

already in an aggregate of size 	� 1 in which case si is added to the aggregate to make it of size

	.

5

4. If availablemax < (� � absolutemax), then map si to a new coarse level state by itself. Another

state visited latter in the aggregation step may be aggregated with this state, if not the coarse

state remains composed of only this one �ne level state.

The goal of this aggregation method is to avoid coupling weakly connected states when in the

presence of a strong connection to some other state, and also to avoid the creation of large aggregates.

The parameter � ensures that states are strongly connected enough before aggregating them together,

and the use of singletons avoids creation of large aggregates. This aggregation strategy takes strongly

di�ering rates into account and therefore will aggregate within blocks when the chain is NCD. As a result,

strongly coupled states are aggregated together and at some intermediate level the ML aggregation will

likely correspond to the KMS coarse level.

4 KMS Algorithm

Iterative Aggregation/Disaggregation (IAD) methods are a well-known class of algorithms for the steady

state solution of Markov chains and which bear a close relationship to the ML method presented here.

IAD methods are reviewed in [7]. The generic IAD method is that of Koury, McAllister and Stewart

(KMS) [3]. Using the notation of section 3, the KMS method is de�ned as follows:

1. Construct coarse level matrix ~Q using (8)

2. Solve coarse system (9).

3. Perform the correction (11), (12).

4. For each coarse level state Si solve the set of equations connecting all �ne level states sk aggregated

to it (sk 2 Si).

5. If not converged goto 1

Step (4) is a Block Gauss-Seidel step on the �ner level, where the blocks are de�ned by the aggregated

system corresponding to (1).

We now see that the KMS algorithm is a special case of ML, obtained by the following choices:

1. Use of only two levels of representation of the system, rather than recursively coarsened problems.

2. The number of �ne unknowns aggregated into a single state is large, whereas for ML the number

of unknowns is between one and three, usually two or three.

3. Use of Block Gauss-Seidel on the �ner level, as opposed to a pointwise Gauss-Seidel scheme.

One open question regarding the KMS algorithm is how much work per global iteration should be

done solving each block on the �ner level. In Stewart [10, 9] SOR was applied for a �xed number of

iterations. We chose instead to solve with GS until the solution does not improve by more than � in

any state, for � values of 1e-06, 1e-09, and 1e-11.

6

Gaussian elimination for the solution of the blocks is generally faster than solution by Gauss-Seidel

iteration when implemented in a way that preserves the sparsity of the matrices involved and these are

of suitably small dimension. For larger blocks both the memory and cpu requirements force the switch

to the iterative scheme. On the other hand, when the chain is NCD the KMS algorithm usually obtains

a fairly accurate solution after the �rst iteration, meaning that Gauss-Seidel already has a good initial

guess and requires only a few iterations to convergence. In this case iteration is to be preferred over

elimination. As done in [9], we use Gaussian elimination for all blocks comprised of fewer than 100

states.

IAD methods such as this su�er the drawback that they are only applicable to NCDMarkov chains.

The aggregation is then de�ned by assigning one coarse unknown to each block. The number of �ne

unknowns that are aggregated to a single coarse state may be quite large.

5 Experimental Results

In this section we describe the experiments and the results obtained. In all �gures, the lines are plotted

in the same order they appear in the legends. We �rst present results from the generalized birth death

structure described in section 2.1. This trivial example allows us to investigate how changing the number

of states per block and decreasing the decomposability a�ect the relative performance of the policies.

Note, in practice this chain would be solved analytically, we only solve it numerically to explore the

relative solution speed of the algorithms.

For both experiments we �x the number of states in the chain at 1000, and set the birth (death)

rate to be 50000 (40000). We choose large rates to prevent numerical under
ow. In all �gures we include

data points for �ve algorithms: GS, ML, KMS-06, KMS-09, and KMS-11, where KMS-xx denotes the

KMS algorithm assuming that block GS is applied on the blocks until the solution does not improve

by more than 1e-xx in any state. We also ran the experiments using KMS-04, not shown, and the

performance is very close to that of KMS-06.

In the �rst experiment we determine what e�ect the number of states per block has on the perfor-

mance of the policies while keeping the problem size �xed. This is done by setting � = 0:01 and varying

the number of blocks since a small number of blocks results in a large number of states per block. For

this experiment we do not use Gaussian elimination for solving any of the blocks in KMS since this

would prohibit us from attributing results to a single factor. If we used Gaussian elimination for small

blocks the algorithm would change as the number of blocks changes, thus making the results di�cult

to interpret.

In �gure 4 we plot the results. We include plots for the number of iterations, the overall
oating

point operation count in millions of
oating point operations (MFLOPS), the time in seconds, and

the ratio of
ops relative to the ML algorithm. The time metric was obtained using the Unix times

system call. The time metric results in similar comparisons, but is dependent on the e�ciency of the

implementation of the algorithms. In addition, we have found the timings to
uctuate do to interference

form other jobs on the workstation, hence we focus on
ops and iterations in subsequent experiments.

First consider the number of iterations needed. The behavior of KMS-11 is exactly what we would

7

expect. KMS-11 requires a very small number of global iterations since the chain is strongly NCD and

the individual blocks are solved to a high level of accuracy. The number of global iterations increases as

the required accuracy of solving the individual blocks decreases. Note that the ML algorithm requires

more iterations than KMS-11 but less than the other algorithms, and that GS requires a large number

of iterations.

Now consider the
ops metric. The ML algorithm requires signi�cantly less computation than any

of the other algorithms and the ordering of the KMS policies is reversed when considering
ops instead of

iterations. The KMS-11 algorithm may require fewer global iterations than the other KMS algorithms,

but each iteration requires enough additional work to outweigh the reduced number of iterations. Note

that Stewart [9, 10] pointed out that increasing the number of iterations when solving each block may

or may not decrease overall solution time. In our experiments we �nd as a general rule that decreasing

the accuracy required of each individual block solve decreases the overall solution time.

The performance of the KMS algorithm decreases as the block size increases because both block

solvers considered (GS and Gaussian elimination) have a superlinear increase in operation counts in the

number of unknowns. The saving per block outweighs the additional number of blocks now needed to

be solved. The blocks used in this experiment were only of very modest size, � 500. As the blocks

increase in size ML becomes faster with respect to GS or Gaussian elimination, thus the superiority of

ML will increase with the system size.

We now explore the sensitivity of the algorithms to the degree of decomposability of the Markov

chain by varying the parameter �. Our implementation of the KMS algorithm always assumes the same

block structure regardless of �, hence by increasing parameter � we can decrease the decomposability.

We plot the results in �gure 5. The performance of the KMS-11 and KMS-9 algorithms quickly degrades

as � increases. The is not unexpected since the policy is designed to work on an NCD chain. The fact

that it converges for high values of � is encouraging. Note that KMS-6 is less sensitive to �. The

ML algorithm is almost completely insensitive to �. This too is not particularly surprising since we

previously showed the excellent performance of the ML algorithm for non-NCD chains [2].

We now consider the less trivial Markov chain of the queueing network model of the multipro-

grammed computer system described in section 2.2. For these experiments we assume all KMS algo-

rithms use Gaussian elimination for solving blocks with fewer than 100 states. The number of states

per block is presented in table 1. For a population of 20 there are 21 blocks, for a population of 50 jobs

there are 51 blocks.

In �gure 6 we plot the results of the algorithms solving this model for a population of 20 when the

rate from the cpu to the terminal is varied from 0.001 to 0.02. Note that a value of 0.002 was used in the

experiments found in [9]. Our original intention in varying the rate from the cpu to the terminals was

to determine how a change in the decomposability of the Markov chain a�ects the relative performance

of the algorithms. The general trend noted from the number of
ops is that as the rate is increased,

hence the decomposability decreased, the KMS algorithms requires signi�cantly less computation. This

is counter-intuitive. The reason can be found in the solution values of the Markov chains. In �gure 7

we plot the probability mass functions for the solution on a block basis. These plots were obtained by

summing the probability mass over all states within each of the 21 blocks. As the rate of going from

the cpu to the terminals is increased, probability mass shifts from the blocks with a large number of

8

1 3 6 10 15 21 28 36 45 55 66

78 91 105 120 136 153 171 190 210 231 253

276 300 325 351 378 406 435 465 496 528 561

595 630 666 703 741 780 820 861 903 946 990

1035 1081 1128 1176 1225 1275 1326

Table 1: Sizes of the 51 Blocks for Example 2

states (corresponding to a large number of active jobs) to the blocks with a small number of states

(corresponding to a small number of active jobs). Hence, the problem becomes trivial for the KMS

algorithm to solve since the blocks with a large number of states require only one GS iteration. Thus,

we �nd the performance of the KMS algorithm is very dependent on the solution to the Markov chain

if the solution results in blocks whose probability mass is signi�cantly smaller than the tolerance used

for determining the stopping point of solving each block.

In �gure 8 we plot the results assuming a population of 50 jobs. At a cpu to terminal rate of

0.001 most of the probability mass in the solution vector is in the last few blocks, hence KMS performs

signi�cantly worse than ML. For higher rates the mass shifts to the blocks with a small number of states

and the performance of the KMS policies improves as in �gure 6.

6 Conclusions

Our experimental evidence indicates that the ML algorithm is an e�cient solver for NCDMarkov chains.

The algorithm is also insensitive to the degree of decomposability and the size of the blocks in the chain

for the examples considered. These results strengthen the case that the ML algorithm is an e�cient

general purpose solver.

Our results also indicate that for the problems we have considered, the ML algorithm is faster than

the KMS algorithm in its proposed form, i.e. using GS (Gaussian elimination) for solving blocks when

the number of states in the block is � 100 (� 100). We attribute the superior performance of the ML

algorithm to the fact that the ML algorithm is much faster than GS or Gaussian elimination for solving

large blocks.

At �rst it may seem surprising that the ML algorithm, not explicitly designed for NCD chains,

should work so well. They key to understanding the good performance of the ML algorithm is the

aggregation strategy. Since the algorithm aggregates strongly connected states together it has a similar

e�ect as the IAD algorithms. In fact, for some small examples of our generalized birth death chain we

have veri�ed that the aggregated chain at some coarse level is the same chain found at the coarse level

of the KMS algorithm.

A secondary contribution of this work is the discovery that the solution speed of the KMS algorithm

(and we assume all traditional iterative aggregation/disaggregation algorithms) can be strongly a�ected

by the solution values of the Markov chain. Note that the ML algorithm is much less sensitive to the

solution values of the Markov chain.

9

The KMS algorithm is an attractive algorithm since it easily parallelizes and allows the e�cient

solution of problems that are larger than memory when the chain is NCD. We conclude therefore that if

KMS is to be used, the ML algorithm should be used to solve the individual blocks since ML is a better

solver for large blocks than GS, Gaussian elimination, or SOR. We plan to investigate this merger of

the two algorithms in the near future.

References

[1] P. J. Courtois: Decomposability; Queueing and Computer System Applications, Aca-

demic Press, Orlando, FL.

[2] G. Horton, S. Leutenegger: A Multilevel Solution Algorithm for Steady-State Markov Chains,

Proceedings of the ACM SIGMETRICS 1994 Conference on Measurement and Modeling of Com-

puter Systems, Nashville, TN , May 16-20, 1994.

[3] R. Koury, D. McAllister, W. Stewart: Methods for Computing Stationary Distributions of

Nearly Completely Decomposable Markov Chains.. SIAM J. Alg. Disc. Math. Vol 5, No 2, 1984,

pages 164-186.

[4] B. Philippe, Y. Saad, W. Stewart: Numerical Methods in Markov Chain Modeling, Operations

Research, Vol 40, No 6, 1992.

[5] J. Ruge, K. St�uben: Algebraic Multigrid. In S. McCormick (Ed.) Multigrid Methods. SIAM,

1987.

[6] H. A. Simon, A. Ando: Aggregation of Variables in Dynamic Systems, Econometrics, Vol 29, p.

111-138, 1961.

[7] P. Schweitzer: A Survey of Aggregation-Disaggregation in Large Markov Chains. In W. Stew-

art Numerical Solution of Markov Chains, Marcel Dekker, 1991.

[8] W. J. Stewart: A Comparison of Numerical Techniques in Markov Modelling, Communications

of the ACM, Vol 21, No 2, p. 144-152, 1978.

[9] W. J. Stewart, W. Wu: Numerical Experiments with Iteration and Aggregation for Markov

Chains, ORSA Journal on Computing, Vol 4, No 3, 1992.

[10] W. J. Stewart: Introduction to the Numerical Solution of Markov Chains, book in

progress.

[11] Y. Takahashi: A Lumping Method for Numerical Calculations of Stationary Distributions of

Markov Chains, Research Report No. B-18, Department of Information Sciences, Tokyo Institute

of Technology, Tokyo, Japan, 1975.

10

0.1

1

10

100

1000

10000

0 20 40 60 80 100 120 140 160 180 200

M
F
L
O
P
s

Number of Blocks

GS
KMS_11
KMS_9
KMS_6

ML

1

10

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140 160 180 200

I
t
e
r
a
t
i
o
n
s

Number of Blocks

GS
KMS_6
KMS_9
KMS_11

ML

0.1

1

10

100

1000

0 20 40 60 80 100 120 140 160 180 200

S
e
c
o
n
d
s

Number of Blocks

GS
KMS_11
KMS_9
KMS_6

ML

1

10

100

1000

10000

0 20 40 60 80 100 120 140 160 180 200

F
l
o
p
s

R
a
t
i
o

Number of Blocks

GS
KMS_11
KMS_9
KMS_6

Figure 4: NCD Birth-Death chain. 1000 states, Number of blocks varied. Upper Left: MFLOPs; Upper

Right: Number of Iterations; Lower Left: Computation time; Lower Right: ratio of FLOPs to ML.

11

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

M
F
L
O
P
s

Delta

KMS_11
KMS_9

GS
KMS_6

ML

1

10

100

1000

10000

100000

1e+06

0 10 20 30 40 50 60 70 80 90 100

I
t
e
r
a
t
i
o
n
s

Delta

GS
KMS_6
KMS_9

KMS_11
ML

Figure 5: NCD Birth-Death chain. 1000 states, 20 blocks, � varied. Left: MFLOPs; Right: Number of

Iterations.

0.1

1

10

100

1000

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

M
F
L
O
P
s

Rate From CPU To Terminals

GS
KMS_6
KMS_9
KMS_11

ML

1

10

100

1000

10000

100000

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

I
t
e
r
a
t
i
o
n
s

Rate From CPU To Terminals

GS
KMS_6

KMS_9&11
ML

Figure 6: Interactive Computer System Model, 20 jobs, processing rate varied. Left: MFLOPs; Right:

Number of Iterations.

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

P
r
o
b
a
b
i
l
i
t
y

i
n

B
l
o
c
k

Block Number

Rate_cpu_terminal = 0.001

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20
Block Number

Rate_cpu_terminal = 0.005

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20
Block Number

Rate_cpu_terminal = 0.010

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20
Block Number

Rate_cpu_terminal = 0.020

Figure 7: Interactive Computer System Model 20 Jobs, selected block probabilities

1

10

100

1000

10000

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

M
F
L
O
P
s

Rate From CPU To Terminals

GS
KMS_6
KMS_9
KMS_11

ML

1

10

100

1000

10000

100000

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

I
t
e
r
a
t
i
o
n
s

Rate From CPU To Terminals

GS
KMS_6
KMS_9
KMS_11

ML

Figure 8: Interactive Computer System Model, 50 jobs, processing rate varied. Left: MFLOPs; Right:

Number of Iterations.

13

